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Approximation properties of the dilations of the integer translates of a 

smooth function, with some derivatives vanishing at infinity, are studied. 
The results apply to fundamental solutions of homogeneous elliptic op- 
erators and to "shifted" fundamental solutions of the iterated Laplacian. 

Following the approach from spline theory, the question of polynomial re- 

production by quasi-interpolation is addressed first. The analysis makes 

an essential use of the structure of the generalized Fourier transform of the 
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basis function. In contrast  with spline theory, polynomial reproduction is 

not sufficient for the derivation of exact order of convergence by dilated 

quasi-interpolants. These convergence orders are established by a careful 

and quite involved examination of the decay rates of the basis function. 

Furthermore, it is shown tha t  the same approximation orders are obtained 

with quasi-interpolants defined on a bounded domain. 

1. In troduct ion  

The basic model in multivariate splines on regular grids consists of a compactly 

supported function ~ : l~ d --, IR (or C) and the space T÷ spanned by its integer 

translates. To establish the approximation order (for smooth functions) of the 

dilations of the space T÷, one identifies first the maximal k for which 

Hk-1 C T÷, 

with IIk-1 the space of all polynomials of degree < k-1 .  With the aid of a suitable 

quasi-interpolant scheme this k is then proved to characterize the approximation 

properties of T÷. Here, a quas i - in te rpolan t  is a bounded linear operator Q÷ 

from C°°(~t °) (or another space of smooth functions) into T÷ of the form 

Q ÷ f  = Z .x(f(. -4- ~))~(. - a), 
a E ~  4 

with ~ being a bounded linear functional of compact support such that Q÷ re- 

p roduces  Hk-1, i.e., 

Q÷p = p, Vp E Ilk-1. 

In case the linear functional is based only on point-evaluations from 7Z d, the 

quasi-interpolant can also be written in the form 

where ~ is a certain compactly supported element in T÷ obtained by applying a 

finite difference operator to ~b. 

Although a discussion concerning polynomial reproduction (for univariate 

splines) already appeared in Schoenberg's paper [S], the characterization of the 

approximation order of the dilations of T÷ in terms of polynomial reproduction 
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was first established in [SF] and therefore is usually referred to as "The Strang- 

Fix Conditions". The introduction of box splines in the early 80's renewed the 

interest in this issue by several authors, resulting in various refinements and 

extensions of these conditions (cf. [DM1], [DM2], [BJ], [B1] and the survey [B2]). 

In this paper we investigate similar questions for smooth functions ¢ which 

are neither of compact support nor even vanish at infinity. Rather though the 

common property to all the functions examined here is that some derivatives of 

them vanish at infinity. More precisely, there exists a polynomial p such that 

p(D)¢ vanishes at infinity more rapidly than some inverse power ][x[[ -k, with 

p(D) the linear differential operator induced by p. To simplify the analysis we 

assume also that p(D) is either an elliptic operator or is close in some sense 

to an elliptic operator, an assumption which allows us to deduce that ~, the 

Fourier transform of ¢, is a well defined smooth function away from the origin. 

To resolve the singularity of $ at the origin, we approximate p by a trigonometric 

polynomial, i.e., approximate p(D) by a difference operator V. The function ¢ := 

V¢ is then shown to have an algebraic decrease at infinity. Such construction 

was first suggested in [DL], and applications of this idea to the computation of 

scattered data interpolant by certain radial functions was carried out in [DLR]. 

The decay of ¢ makes available the quasi-interpolant 

Q,~f= ~ f(a)¢(.-a), 
otE~ a 

which is well-defined with respect to functions of sufficient slow growth at infinity, 

where the sum is calculated in the topology of uniform convergence on compact 

sets. 

This construct allows us to discuss questions of polynomial reproduction and 

approximation order from the space T ,  := the completion in the topology of 

uniform convergence on compact sets of T¢, the latter consists of all finite linear 

combinations of the integer translates of ¢. Indeed, using the expansion of 1/~ 

around the origin, we identify in section 2 the space of polynomiMs that can be 

reproduced by the above technique. 

Results on polynomiM reproduction can be used to obtain approximation rates 

by scales of Q¢, hence to provide lower bounds  for the approximation order 

from the dilations 

T,,h := {f(h-l")  I f E T ,}  
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of  T~. For ¢ which decays fast enough at infinity it is easy to get such rates. In 

the following (and elsewhere in the paper) A stands for a constant which may 

vary from one equation to the other. 

PROPOSITION 1.1: Assume that for j = 1,..., d the series 

aE2~ d 

is uniformly bounded (in x ). De~ne 

Q,/,,h : f ~ E f ( h a ) ¢ ( h - ' . - a ) .  

If  Qcp = p for all p 6 1-It, then for every f whose derivatives of order ~ + 1 are 

bounded we have 

][Q¢,hf - fI[oo _< AIIfIIoo,t+lh TM, 

where Ilflloo,t+x := ~l~l=t+l  IlD~fll °° < oo. 

Proof: By the standard quasi-interpolation argument, we may assume that for 

any fixed z the Taylor expansion of f around x up to degree £ is trivial. Since 

the (g + 1)-order derivatives of f are uniformly bounded, then 

(1.1) If(z)l < Allflloo,t+lllz _,,t+l _ -- Xlloo - 

Therefore 

IQ¢,,f(z)l <Allflloo,t+l ~ I lhm- z l l~a l¢ (h - l z  - m)l 
aE~ d 

d 

<Ah'+'il/ll~,e+, ~ ~ Ih-% --jle+ll¢(h-'x --)i. ' 
j=l aE~ ~ 

The following corollary provides an approximation order for ¢ of sufficient fast 

decrease at infinity. 

COROLLARY 1.2: Assume that 

(1.9.) I¢(x)l _< A(1 + Ilxll~) -(d+k), 

for k > ~ + 1. If  Qcp = p for a/l p E He, then, for every function f whose 

derivatives of order e + 1 are bounded, 

,+1 (1.3) IlQ~,,hf - flloo < Allflloo,t+~h , 
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where A depends on ¢ but not on h and f. 

Proof'. By (1.2) we have 

(1.4) Ixj - ~ l t + ' l ¢ ( ~  - ~)1 -< A(1 + IIx - cHIoo) -¢a÷'>, j = l , . . . , d ,  ~ > 0 .  

The rest follows from Proposition 1.1. II 

In section 4 we study the case when ¢ satisfies the weaker requirement 

(1.5) I¢(~)1 < A(1 + I1~11oo) -(d+t+').  

While the above corollary shows that under (1.5) one obtains approximation order 

O(h t) for all functions whose t th  order derivatives are bounded, we prove that 

if also the (t + 1)th order derivatives of f are bounded then the approximation 

order is at least O(ht+a I log hi) , and under more restrictive assumptions on f and 

¢, one may get approximation order O(ht+l). This extends the result of [Bu] 

concerning univariate multiquadrics and the results of [Jl] (see also [32]) where 

the rate O(ht+~ I log hi) is obtained for a restricted family of radial functions ¢, 

and the rate O(h t+l) is established for ¢(x) = Ilzl12 in an odd dimension d. 

In section 3 we show that the model investigated here includes the fundamental 

solutions of homogeneous elliptic operators and also most of the examples of 

radial basis functions now in the literature. Finally, we show in section 5 how 

the convergence rates of section 4 can be obtained for functions defined only on 

a bounded domain. 

Throughout this paper we use the multi-index notation. For o~, # E IR a, 

d d d 

= ll ll - -  o -- I I  
k=l k=l k=l 

~ d  for ~ e ZZ~_ :-- {~ ~ ZZ d ['rk >_ 0}, 

d d ~ Oqa~ 

~! = I I  ~k!, I~l = ~ c ~ k ,  D ~ = ''xx ,q~,~k and f(~) = D~f. 
k----a k=l k=l " ' °k  

Also Hm = span{x ~ [ I~l -< m}, while II stands for the space of all d-dimensional 

polynomials. 
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2. Polynomial Reproduction 

In this section we identify the polynomials which are spanned by the integer 

translates of a function ~ : ~d  ._0 IR, in terms of properties of the generalized 

Fourier transform ~ of qi. The assumptions on ¢ which are made below, are 

tailored to provide a unified analysis for fundamental solutions of homogeneous 

elliptic operators on the one hand, and certain families of radial functions on the 

other hand. 

Assume the Fourier transform ~ of the given function $ (treated as a tempered 

distribution, of. [GS]) satisfies the equation 

(2.1) c$  = F ,  

where the functions F E C'~°(lR ~) n coo(~\0) and G e C°°(~ d) satisfy 

(a) 

(b) 

(2.2) (c) 

O(w)#O if w # 0 ,  

o(")(o) = o, I-I < m ,  

c,.(w) := ~ c(")(0)~., ¢ 0, 
lal=" 

F(")(0)=.  
(d) F(O) # 0 ,  F(z) - Z 4! E .T,,,o+O 

I,~1<~o 

(e) I(F/C)(~)(w)l _< A__~_. 
I lw l ld+  • 

for Ilwll _> 1, ~ > o, 

for some e > 0, 

where in (d) we have used the notation 

Yr = { f  ~ o°°(n~'\o) lf(~)(x) = O ( l l = l r - I ' ~ l ) ,  as = --, o, ~ ~ zz~.} .  

Conditions (b) and (c) are simply specifying m as the order of the zero a has 

at the origin, while conditions (d) and (e) are of technical nature. The crucial 

assumption above is (a), which implies that ~ coincides away from the origin 

with the function F/G. We also assume that the order of ~ (as a distribution) 

does not exceed m - 1, namely that ~ is a well defined linear functional on S,,-1 

given by 

r F(w) 
(2.3) "~(s) = J s(w)-G--~dw , s e Sin-, ,  

R" 
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where 

sm_l  = {~ • s t , ~ ( 0 )  -- 0 ,  I,~l _< m - 1} ,  

and S is the space of C °O rapidly decreasing test functions. 

To understand the nature of solutions of (2.1), we prove 

LEMMA 2.1: Let q~ satisfy (2.1) and (2.3). Then any other ~1 

G~I = F differs from ~ by a polynomial. Precisely, 

(2.4) ~,(s) = ~(s) + [p(D)s](O), s • S, 

w h e r e  

(2.5) p •  {p •~ r  I [p(~)(D)G](O)=O, a • = ~ }  = k e r G ( D ) l  n . 

If  h~ addition ~1 satisfies (2.3) then p • Hm-l .  

Proof: The equation G(~, - ~) = 0 is equivalent by definition to 

G(~, - ~ ) ( s )  = 0, s • s .  

Since G(w) # 0 for w # 0, the support of g, - ~ is the origin, hence there exists 

p • II such that (2.4) holds. Furthermore, 

[p(D)(as)](O) = (~, - ~ ) (as )  = a ( ~ ,  - ~)(s) = O, Vs • S ,  

an equality which is equivalent to 

[p(~)(D)O](O) = O, ~ • 2Z~ , 

and thus, indeed, p satisfies (2.5). If in addition ~l satisfies (2.3), then by (2.4) 

p(D)s(O) = O, s • S,,,_~ showing that p • II,,,_l. The second equality in (2.5) is 

a straightforward extension of Theorem 3.3. 1 

To resolve the singularity of $ we multiply it by a trigonometric polynomial 

with a high order zero at the origin, i.e., apply a finite difference operator V 

supported on I C 7Z, d to $, so that the resulting function ~b is in span {$(z - a )  I 

~ I } .  

that satisfies 
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LEMMA 2.2: Assume F, G satisfy (2.2). Then G/F E C re+m° in a neighborhood 

of the origin and 

(2.6) 

Let 

(2.7) 

be a trigonometric polynomial that satisfies 

(2.s) (~ - a / F ) ( ~ ) ( o )  = o ,  

for some integer 0 < t < mo. 

(2.9) 

is the func t ion  

(2.10) ¢ = e  G. 

Moreover, ~b E Ct(IR d) and satisfies 

(2.11) ~(o)  = 1 ,  ~(~)(o)  = o ,  

(G/F)(~')(O) = 0 ,  I~1 < m. 

e(w) = Z a~e-'("~ 
aEI 

[~[ <m+~ ,  

Then the Fourier transform of 

¢ := Z a ~ ¢ ( -  - a) 
c, E l  

1 < I~l -< ~, 

(2.12) p(-iD)¢(21ra) = O, a C ~ \ 0 ,  p C PG N Ht+m , 

w h e r e  

(2.13/ va := {p ~ n l (¢°)(-~D/C) (0/= 0, ~ ~ =~}. 
Proof." By (2.2) near the origin 

m-b mo 

(2.14) -~(w) = F(O)-IGm(w) + Z qj(w) + ~'(w), 
j=m+l  

where qi is a homogeneous polynomial of degree j and ~" E ~-m+m0+0. Hence 
G T E C re+m° in a neighborhood of the origin and (2.6) holds. 
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From the definition (2.9) of ¢ it follows that 

(2.15) ~ = j .  

To establish (2.10), we note that by (2.6) and (2.8), es • Sin_ 1 for any s • S. 

Thus (2.15) together with (2.3) yields the equality 

F ~(~) = ~ ( ~ )  = -~, s • S, 

which is equivalent to (2.10). The structure of the zeros of ¢ at the origin is 

obtained from (2.10) by observing that near the origin 

[ c(~)l  F(w) e(w) - + 1 
¢ ( w ) -  G(w) r (w)J  

with 
F(w) = T M - m  

~(~) + ~(~) , 
a(~) j : _ ~  

where by (2.2) ~" 6 ~-m0--,+0, and 7J is a homogeneous function of order j in w, 

n ~ e l y  ~j(t~) = t ~ ( w ) ,  t • m\o.  Thus, in view of (2.8) and (2.14) 

m0 

(2.16) ~ (~ )  = 1 + ~ h~(~) + ~(~) 
j = / + l  

with h • ~',,,,+# and hi a homogeneous function of order j .  Since h~a)(0) = 0, 

0 <_ [a[ < j ,  we conclude that ¢ E Ct(]R a) and satisfies (2.11). 

Finally, since for every smooth enough f and every polynomial p • T'a, 

p(- iD)( fa) (o)  = E [ v! j (O)[p(V)(-iD)G](O) = O, 
v>_o 

we see that 

v~ n n,+~ c {v • n I (p(°~( -~) (a /F) )  (o) = o, ~ • zzt}. 

F.rthe~ore, ~(~ + 2 ~ )  = ~(~), ~ • ~d while C(~) # 0 for w # 0, hence, by 
(2.s), 

[p(-iD)C~(2ra) = E [ u! (2~ra)[p(~)(-iD)e](O) = 0 ,  
v>_o 
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for any p • Ht+m f3 ~i~ G and a • ~d\o.  This completes the proof of (2.12). | 

Remark 2.3: A trigonometric polynomial (2.7) satisfying (2.8) can always be 

constructed, by choosing I = {~ I 0 < ai < m +~  , i = 1, . . . ,d},  since the 

tensor-product interpolation problem 

(2.17) e(~)(0)=b~,  0 < _ ~ < _ m + ~ ,  i = l , . . . , d ,  

with any {b, ] 0 < ai < t + m} admits a unique solution from span{e"'~}a~i. 

Remark 2.4: A set I supports e of the form (2.7) which satisfies (2.8), if I is 

total for Hi+,,,, i.e., 

(2.18) p • H t + m ,  Pit = 0  =~ p = 0 .  

In cue  IXl = dimIIt+,,,, conditions for I satisfying (2.18) can be found in [GM], 

see also the general discussion in [BR]. For specific G, F, however, smaller sets I 

may be available (cf. [J2], [R2]). 

The next two lemmas deal with the rate of decay of the function ~b, obtained 

from properties of t~. This is a crucial step in the identification of the polynomials 

spanned by the integer translates of ~b. 

LEMMA 2.5: Under the conditions of Lemma 2.2 for 0 < ~ < m0 

(2.19) 

Proof: 

I~'(~)1 = o(11~11 - d - t )  as I1~11 .l~ ~ .  

For 0 < e < m0 it follows from (2.16) that, for (~ • ~ d ,  

~ ( ~ ) ( w )  = O(llwll t + l - I ~ l )  ~ w --, 0, 

while for ~ = m0 

~ ( " ) ( w )  = o( l iwl l  ~o+° - I~ t )  • w -~  0. 

Moreover, by (2.2), (2.10) and the boundedness of all the derivatives of e, 

(2.20) 5 (") e LI(]Rd\B,), a E 7zd,  e > 0, 

where B, = {w • ]R d [ ll~ll < ~}. Hence, for I•1 < ~ + d, ~(~) • L,(IR a) which 

implies, by the Riemann-Lebesgue lemma, that 

lim z"~(z)  = 0, I~l < ~ + d. n 
Ilzll--*oo 

For ~ < m0, and under some additional conditions also for ~ = m0, the decay 

of ~k at infinity is better than in (2.19). For F • C°°(IRd), we can take m0 = oo, 

and therefore the result of the previous lemma holds for any ~ > 0. 
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LEMMA 2.6: Under the conditions of Lemma 2.2, if 

(2.21) ¢(w) = f ( w ) +  f (w) ,  

with ]'e :'t+,+,, o > o, and f(~) = O(llxll -a-t-') as ll~ll ---' co, then 

(2.22) ¢ ( x )  = 0(11~11 - a - t - ~ )  as II~ll --' c o .  

Proof: Consider the function 

R(w)  = V~(w) - p(w)?(~,)  

where p E C°°(IRa), 0 < p(w) < 1, and satisfies, for some 6 > 0, 

I, llwll < 6/2, 
(2.23) p(w) = o, llwll > 6. 

105 

R(~) E L~(B~/2) forlal_<t+1+d. 

Thus 

_~(~') ~ L~(IR a) for I,~1 _< ~ + 1 + d 

implying, as in the proof of Lemma 2.5, that 

R(x)  = o(11~11 - a - t - l )  as I1~11 ~ co. 

To complete the proof of the lemma it remains to show that 

¢(x) - R(x) = (p~)V@) = O(llx[i-d-t-1) as I1~11 ~ co- 

First, we conclude that (p]')v E C°°(lR a) since p]'is of compact support. Writing 

p f =  f ÷  ( p -  1)]', we observe that ( p -  1)]" e Coo(iR a) and hence ( ( p -  1)f") v 

is rapidly decaying as ]]z]] --* co. This together with the assumption f (x)  = 

o(ll~ll - d - t - l )  as II~Jl--, co, completes the proof of the lemma, m 

and hence 

Then, by (2.20) and (2.23), R('~) e L'(IRa\B~/2) for a e 7/,,~., while for w e 

B6/2 
R(, , )  = ]'(w) e .rt+,+o, 



106 N. DYN E T  AL. Isr. J.  Ma th .  

COROLLARY 2.7: Under the assumptions of Lemma 2.2, for 0 < ~ < mo, ¢(x) = 

O(llxll - ~ - t - 1 )  as I1~11--' oo. 

Proo~ By (2.16), for 0 < e < m0, the terms f ,  f in (2.21) may be chosen as 

and 

,T(w) = h t + i ( w ) ,  

n o  

j=l+2 

ht+l(tw) = tt+lht+l(w), t E IR, (2.24) 

h¢(~)  + ~ ( ~ )  ~ J:t+~+o . 

It follows from (2.24) that / is the inverse Fourier transform of a homogeneous 

function of order ~ + 1, therefore is homogeneous of order - g  - 1 - d away of 

the origin, and hence f ( x )  = O([Ix[[ -~- t -1 )  as fix H --* oo. Thus ¢ satisfies the 

requirements of Lemma 2.6 and (2.22) holds. | 

Remark 2.8: The observation that f E .7:r ~ x " f  E 9rr+l~l,a E ~ d ,  combined 

with the same type of arguments as above, proves that under the conditions of 

Corollary 2.7 

D ~ ¢ ( z )  = o ( l l ~ l l - d - t - ~ - t " t )  , ~ e zz~ . 

We can now state the main result of this section. 

THEORBM 2.9: Let "¢ satisfy (2.1), (2.2) and (2.3), and let ¢ = e¢ ~,here e is 

a trigonometric polynomial (2. 7) satisfying (2.8) with 0 < ~ < too. Then for 

p q T~a N lit  

(2.25) Q~P := Z p(tr)¢(. - tr) = p ,  

and the convergence of the infinite sum to p is uniform on compact subsets of 

IRa. 

Proo£" For p E 79a N l'It, consider the function 

(2.26) gx(y) = p ( v ) ¢ ( x  - v ) .  

By Corollary 2.7, gz(y) E LI(IR a) for any fixed x E IR a, and also the sum 

~ e w . ~  g~(" + a) is uniformly convergent on IRd, since 

(2.27) 

Ig~(v)l = I p ( v ) ¢ ( x - y ) l  = O(l lv l lqix-yl l  - t - a - ' )  = O( l lv l l -d - i ) ,  as Ilvll ~ oo. 
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Hence ~ e g ,  g , (y+a)  defines a continuous function in y which is periodic. Now 

by (2.26) 
= [ p ( x  - iD)  (-,.) 

lal<t fl" 

and in view of (2.16) and (2.2) ~'~ E L~(IRd). 

Now, since p(~) E Ht n P a  for all/~ > 0, it follows from (2.11) and (2.12) that 

( 2 . 2 s )  = p(x), 
I#l<t 

(2.29) ~,(2~ra) = 0 for a E 7Za\0 • 

Hence ~-'~,~ez~ ~x(2~ra) is absolutely convergent and the Poisson Summation For- 

mula ([SW], see also [J2]) may be invoked to yield 

(2.30) 
~E2~ ~t a E ~  ,t et ETZA 

Moreover, the convergence in (2.30) is uniform in x on compact sets of IR a, as is 

implied by (2.27) with y = a. | 

COROLLARY 2.10: Under the conditions of Theorem 2.9 

(2.31) PG n Hmo-, C T~ , T¢, = span{ ¢(x - a)  ] a E ~g},  

where the closure is taken in the topology of uniform convergence on compact 

sets. 

It is clear from the proof of Theorem 2.9 and Lemmas 2.5, 2.6 that 

COROLLARY 2.11: Let ¢ be as in Theorem 2.9 but with ~ = m0. Then (2.25) 

holds t'or p E PG n Hm0-1. Moreover, i r e  satis~es the conditions of Lemma 2.6 

then (2.25) holds/'or p E P a  f'l Hm0 and 

(2.32) PG n H,,, o c T~ 

Remark 2.12: By (2.2) and (2.13), 

(2.33) PG N rlt = Ht ~ l _< m - I. 
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Thus for ~ _< m - 1 the spaces of polynomials reproduced by sums of the type 

(2.25) are of total degree. The value £ = min(m - 1, m0) is the maximal £ such 

that 1-It is reproduced by quasi-interpolation operators of the form (2.25), and 

hence determines the maximal rate of approximation by the scaled versions of 

Q¢ 

(2.34) Q¢,hf(x) = 

(see sections 4 and 5). 

aEh~ ~ 

It should be noted, in view of Remarks 2.3 and 2.4, that as ~ increases the 

support I of the difference operator defining ¢ • T¢ in (2.9) is likely to increase. 

3. Applications 

In this section we discuss two classes of functions that satisfy the assumptions 

in (2.1) and (2.2): fundamental solutions of homogeneous elliptic operators, and 

"shifts" of the fundamental solutions of the iterated Laplacian. In both cases, 

we employ the results of the previous section for identification of polynomials in 

the associated T~. 

Roughly speaking, the difference between these two cases can be summarized 

as follows: in the case of a fundamental solution ¢ of an elliptic operator P(D), 

the distribution P(D)¢ is of compact support (in effect, the Dirac distribution). 

Finite difference operators can then "imitate" P(D) to the extent that the re- 

sulting V¢ decreases to 0 at infinity at any desirable algebraic rate. In the case 

of the "shifted" fundamental solutions of the iterated Laplacian, the associated 

differential operator when applied to ~b, yields a function with only algebraic de- 

crease at infinity. Analogously, the associated V¢'s decrease at infinity no faster 

than P(D)¢.  This observation will lead in the next section to a saturation re- 

sult concerning the approximation order by quasi-interpolants which uses these 

"shifted" functions. 

I. FUNDAMENTAL SOLUTIONS OF ELLIPTIC OPERATORS 

Let P,n(x) = ~ a~x ~, m > d, m even, satisfy 
I~1=-, 

(3.1) P~(x) # 0, z # 0. 

We take ¢ to be a fundamental solution of the operator (-1)'n/2Pra(D), namely 

a solution of the equation 

( -1 ) ' /2  P,,,(D)¢ = P,n(-iD)¢ = ~. 
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The equivalent definition of ¢, in terms of the generalized Fourier transform ¢ of 

4, reads as 

(3.2) Ping = 1. 

It is clear that the pair G := Pm and F := I satisfies (2.2) with m0 = ~ .  Among 

all solutions ¢ of (3.2) we choose ~ as the distribution 

(3.3) 

p,,(w~ dW, s • S, 
I,~I< m a! ] B 1Rd\B 

where B = {~  • n ~ I Ilwll -< 1}. 

LEMMA 3.1: The distribution ~ defined by (3.3) satisfies (2.3) and is a solution 

of equation (3.2). 

P r o o f :  Since s(~)(0) = 0, I~1 < m for s fi Sin-1 then by (3.3) 

(3.4) ~(s) = f pm-~,(w)dw, $ • Sm--1. 
IR d 

Now, for any s • S, Pms • Sin-l, hence by (3.4) 

1~ d 

proving that I'm ¢ = 1. | 

It is easy to check that for ¢ defined by (3.3) 

(3.5) 

1 (iw. x)J ~ .  
4(x)- - (27r)  d~/I.J 1 "i~.~ m-1 

B j=0 iRd\ B 

since 

4 ( ; )  = ~(~), ~ • s .  

For any g _> 0, let the trigonometric polynomial 

(3.6) ~,(w) = ~ a o :  ' ° ~  
a E I  
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satisfy 

(et -- em)(a)(0) = 0 ,  I~1 -< m + ~. 

Then, by Lemma 2.2, the Fourier transform of 

(3.7) Ct(x) := Z aa¢(x - a) • Tg, 
ctEI 

is the function 

(3.8) ~t et 
Pm 

Isr. J. Math. 

(3.9) 

and by Corollary 2.10 

(3.10) 

where 

Q~,(p) = p, p • 7:'e,~ n Ht, 

Pp,,, N lit C T~, 

~',,m = {p e r t  I ( p ( ° ) ( - i D ) p . , ) ( o )  = o V ,~ • =~}. 
Since the polynomial Pm is homogeneous, so is the associated space 7~pm. Hence 

this space can be written in the simpler form 

(3.11) Pp,,, = {p • II[ (p(~')(D)Pm)(O) = 0 ,  V a • ~ d } .  

Since in (3.10) ~ can be arbitrarily large (with the support I of Ct in (3.7) changing 

with g), we conclude that 

COROLLARY 3 . 2 :  "PPm C T~. In particular 

(3.12) IIm-1 C T¢. 

As already indicated in (2.5), spaces of the form TaG constitute in H the kernel 

of a certa/n differential operator. In the case in hand this space in simply the 

kernel in II of Pm (D). 

Further, since in this case m0 = oo, Corollary 2.7 guarantees that el(x) = 

O([[x[[ -g - t - l )  as I[x[[ ~ oo, for ~ _> 0. Thus we obtain from Theorem 2.9 that 
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THEOREM 3.3:  Let 

(3 .13)  

Then 

(3.14) 

and hence ker Pm(D) C T~. 

Proo£" 

(3.15) 
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ker Pro(D):= {p e III Pm(D)p = 0}. 

ker P,~ (D) = T'p,,, , 

Observe first that p E ker Pro(D) if and only if for all a E 7Z,~_ 

Pm(D)p(a)(O) = D'~[Pm(D)p](O) = O. 

This means that (3.15) identifies ker P,,(D) as the largest D-invariant (namely, 

differentiation-closed) subspace of 

{p E rl l Pm(D)p(O ) = 0}, 

while, by its definition, Pp,, is the largest D-invariant subspace of 

{p EII  I p(D)Pm(O) = 0}. 

Our claim thus follows from the fact that for any two polynomials p, q p(D)q(O) = 

q(D)p(O). | 

It is interesting to note that the difference operator defining Ct in (3.7) 

(3.16) V t f  = E a,~f(. - ~), 
aEI 

approximates the differential operator (-1)m/2pm(D) in the following sense: 

PROPOSITION 3.4: Let VL be given by (3.16), where I C ~d and {aa : a E I} 

are chosen so that et(w) -- Y~c~el aae-ia'w satisfies 

(3 .17)  ¢ (o) (o)  = , I, l < + m .  

Then 

V t f  = ( -1 )m/2pm(D) f  , f E IIt+m • 



112 N. DYN ET AL. Isr. J. Math.  

Proof." Let q E IIt+m, and consider the polynomial 

p = ( - 1 ) m D P r a ( D ) q  - V t q  = P m ( - i D ) q  - V t q .  

To show that p = 0 we prove that ~" = 0. Now 

(3.18) p-'(~) = [ P ~  - e , ] q ~ )  = ~'((Pm - ~)~), 
and since q E IIt+,n 

s E S ,  

~ )  = ~2_, co , (~>(o ) ,  s e S .  

IM<t+m 

On the other hand, by (3.17) [(P~ - et)s] (~) = O, lal < e +  m proving that  in 

(3.18) ~ s )  = 0, ~ e s .  m 

Remark 3.5: For ¢ satisfying (2.2), a result similar to Proposition 3.4 holds, 

namely 

V t f  = G ( - i D ) f  , 

where for f E IIt+m 

( G / F ) ( - i D ) f  := 

f E IIt+m , e < mo , 

a! 
a ~ g  d 

lal<rn+t 

The most interesting cases for Pm are when Pro(D) is the iterated Laplacian, 

namely 

Pro(x) = Ilxll m, P,~(D) = (D . D)  m/2 , m even. 

In these cases for m > d [GS] 

(3.19) Cm,d(~) ---- / C'~'dll~ll"-d' d odd, 

( c~,AI~II ~-alog II~[(, d even, 
and, by Corollary 3.2, the space of total degree polynomials contained in T~,~.d 

is II,~-l.  Thus for fixed odd u > 0, II~+d-1 E ~-p--~{llz - a l l  ~ , a E 7zd}  in odd 

dimension, while for even v > 0, II~+d-1 E ~-P--~{llx - ~11 ~ log I1~ - a l l ,  ~ E 7z, a} 

in even dimension. This observation shows that the same radial function has 

better approximation properties (see sections 4 and 5) as the dimension of the 

space increases. 

The functions ¢ = V0¢m,d, m > d, are studied in [R1], and shown to have 

properties similar to the univariate B-splines. Explicit construction and proper- 

ties of ¢ = Vt~b,n,a, £ > 0, are discussed in [R2]. 
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II. RADIAL FUNCTIONS 

The fundamental solutions of the iterated Laplacian (3.19) are radial func- 

tions, namely ~b(z) = f(l[xll), for some univariate f .  Here we investigate ra- 

dial functions which are not fundamental solutions of elliptic operators, but are 

obtained from fundamental solutions of the iterated Laplacian by the change 

IIxll , ~/llxll ~ + c~ with c > 0. Thus we consider the following functions 

~(z) = f.x(z) = (ll~{I ~ + c2) ~/~, 
(3.20) 

~(x)  = g,,(~) = (ll~ll 2 + c2) J'/2 {og(llxll 2 + c2) 1/2, 

without restricting initially the values of ~. The Fourier transforms of these 

functions satisfy the equation [GS]: 

(3.21) Ilvalld+ ~ f j , (w) = c~; (d+ ~)l~(llcwtt ), 

(3.22) 

+ c~,llwll d + ~ O  [llwll-d-~ff~(llcwll)], 
where 

(21r)d/22X/2+l and ~'.(llwll) Ilwll~K,01wll), 
r ( - } )  

with K~(t) the modified Bessel function [AS]. The expression (3.22) may be 

obtained from (3.21) with the aid of the relation 

0 
~ / ~  = g~. 

N 

The properties of K,,(t) needed in our analysis are: 

(3 .23)  -~0(t)  ~ - log  t ,  _ ~ ( t )  ~ 2 ~ - ' r ( v ) ,  v > O ,  t ~ 0 + , 

and for integer wlues of v 

O O  O O  

(3.24) K~(t) = E ak,~t2k + (l°gt)t2~ E bk,~t2k' as t --* 0 +, 
k=0 k=0 

a0,~ = 2~-1 (v  - 1)!, b0,~ # 0. 
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Defining G(w) := Ilwll d+x, we see that G satisfies (2.2) only when d + 

is an even positive integer. Furthermore, with this choice and with F(w) := 

cxK(d+X)/2(HcwH), F(0) # 0 whenever cx # 0. The interesting choices of (d, $) 

here are: 

~(x)  = (llxll ~ + c~) x/~ d, ~ odd, - d  < x, 
(3.25) 

~(~) = (11~11 ~ + e~) x/~ d, A even, - d  < A < 0 .  

The choice $, d even $ > 0 corresponds to cx = 0 and is of no interest since then 

is a polynomial of degree &, hence its translates generate a finite dimensional 

polynomial space. For the ranges of & in (3.25), (3.24) indicates that (2.2) is 

satisfied with m := d + &, m0 := m - 1, 

(3.26) G(w) := Ilwll m , F(w) := em_dg:,,/2(llewll). 

Note that ~ is infinitely differentiable, hence its Fourier transform is rapidly 

decreasing at infinity. In fact, ~ decays exponentially at infinity, [AS]. 

Restricting ,~ + d to positive even integers is also necessary for equation (3.22) 

to satisfy conditions (2.2). Furthemore, choosing ,k to be even and non-negative, 

we get cx = 0, hence resulting (up to a constant factor) in the same Fourier 

transform as in the previous case. Thus we choose the range of d, ,k there to be 

(3.27) ~b(z) = (llxll 2 + c2) x/= log(llzll ~ + c~) 1/2 , ~,, d even, ~ > 0. 

This range complements that in (3.25) for even d. For this range, G and F in 

0 c and with the (2.2) are of the form (3.26) with c,,,-d being replaced by ~ ,,_~, 

same choice of m and m0. 

Thus for the functions in (3.25) and (3.27) the ratio G/F, can be expanded 

near the origin in the form: 

G(w) = Ilwllm{ 
(3.28) 

a,,ll~ll 2" + Ilwll" log I1~11 ~ b,,llwll ~" 
u>_O v>_O 

+ Ilwll~"(l°g 11~11)2 ~ c~'ll~ll~" + " " /  
u_>o 

In view of this expansion, a trigonometric polynomial et(x) satisfying 

(3.29) D~' (et - G )  (o) = o , ,c~, < m + ~ 
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exists only for ~ < m - 1, and by Theorem 2.9 with Ct = ere 

(3.30) Q c t ( p ) = p ,  p E H t ,  0 < ~ < m - 2 .  

This result can be extended to £ = m - 1 by showing that ¢m-1 satisfies the 

conditions of Lemma 2.6 and then applying Corollary 2.11. 

LEMMA 3.5: Let c,,,-1 be a trigonometric polynomial satisfying (3.29) with ~ = 

m - 1, and let 

¢m-1 = em-IF/a  

where G(w) = Ilwll m and F(w) = ~ g m n ( l l c w l l )  with ~ ~ ~ .  Then ~ satisaes 

the conditions of Lemma 2.6 with ~ = m - 1. 

Proof." By (3.28), (3.29) and (3.24), near the origin ¢ has the expansion 

[ G(w)l F(w) e(~)_ 
~m--l(W) = 1 3 t- ~ F ( w ) J  

(3.31) = 1 + hm(w) + ~llwll m log Ilwll + ~ ( w ) ,  

with hm(tw) = tmhm(w), hm 6 C°°(IRd\O), "h 6 7z,,,+s for any 8 6 (0, 1), and 

6 IR\0. By the homogeneity of hm its inverse generalized Fourier transform 
v 
hm (x) is homogeneous of order - m  - d away of the origin. Hence 

v 
am (x)  = O( l lx l l -"~ -d) ,  as Ilxll--* ~ .  

Moreover, since m is even, (llwll m log Ilwll) v is infinitely differentiable away of 

the origin and a direct calculation yields 

(llwll m log Ilwll)V(tx) = t - ( "+d) ( l l ,W"  log Ilwll)V(z) - t -('+d) log ItlL, t ~ ~ \0 ,  

where L is a distribution supported at the origin. Hence ¢ satisfies the require- 

ments of Lemma 2.6 with ~ = m - 1. I 

Remark 3.6: The same type of arguments together with the two observations: 

f 6 ,~'r =~ x a f  6 "~'r+lal' a 6 77,,~. , 

(~o~llwll m log Ilwll)V(t~) = 

t-O~l+m+d)(w%wll m log Ilwll)v(z) -- t -( l~l+m+d) log ItlL~, t 6 IR\O, 

for some L~ supported at the origin, prove that under the conditions of Lemma 

3.5 

O~¢m_l(z )  = O(llzll-a-m-I~l) as Ilzll ~ ~ ,  ~ 6 7Z,~ . 



116 N. DYN ET AL. lsr. J. Math. 

COROLLARY 3.7: Let Cx be one of the functions in (3.25) or (3.27), and let 

~2x ---- etCx where et satisfies (3.29) with m = A + d, ~ = m - 1, and F, G as above. 

Then 

Q~,xp = p ,  p E 1-It = IIx+d-1 , 

and hence 

II~+d-1 C T ~  . 

Remark 3.8: The radial functions in (3.25), (3.27) are all obtained from funda- 

mental solutions of the iterated Laplacian by the change [[x[[ ~ x/[[x[[ 2 + c 2 with 

c > 0. This "shifted" version of the fundamental solutions of Pm (D) = (D. D) m/2 

correspond to all positive values of the even integer m (=)~ + d > 0), while in 

the case of the fundamental solutions themselves, (3.19), the possible range for 

the even integer m is restricted to m > d. It is clear that this range of m can- 

not be extended since the fundamental solutions are singular at the origin for 

O < m < d .  

4. Approximation Order by Quasi-interpolation 

In the introduction it is shown that the conversion of the polynomial reproduction 

of Q¢ into approximation rates of Qv,h may be done exactly as in the compactly 

supported case, if ¢ decreases fast enough at infinity, namely if Q~p = p, p E ~rt 

and ¢(x)  = O(Hxll -(d+~)) as Ilzll ~ c~, with k > ~ + 1. Here we investigate the 

more subtle case when it is known that 

(4.1) I¢(x)l ~ A(X + Ilxlloo) -<d+l+'), 

while 

(4.2) = p, vp e nt .  

These conditions are satisfied by most of the models considered in Section 2. We 

assume throughout this section that (4.1) and (4.2) hold, and that all functions f 

approximated by Qc~,h are admissible in the sense that the partial sums of Q~,hf 

converge absolutely and uniformly on compact sets. We look here for conditions 

on f and ¢ that allow the improvement of the approximation rate O(h t) provided 

by Corollary 1.2. 
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The outline of the discussion is as follows: we show first that for a function f 

with bounded derivatives of order ~ and ~ + 1, the approximation order to f by 

Q,~,h depends on the behavior of the sum 

(4.3) Z f (ha )¢ (h - '  . -er). 
aE[-h-  1 ,h- l]ttFl~ tt 

Following [J1], we then prove that for such f the approximation rate is (at least) 

O(ht+l } log h D. Aiming at achieving better rates, we assume that the (£+2)-order 

derivatives of f are bounded as well. That latter case is treated by a sequence of 

reductions: first it is shown that approximation order O(h t+l) is equivalent to 

the uniform boundedness of the sums 

Z otB~g(h -1"  - ~ ) ,  h > 0, I~1 = ~ + 1. 
ctfi[--h- l ,h- t]dNSrZd 

Under further assumptions on the behavior of the first order derivatives of ¢, 

the boundedness of these sums is converted in the usual way to the uniform 

boundedness of the integrals 

(4.4) [ ( )~¢,  h > 0 ,  1 8 [ = ~ + 1 ,  
J[- h - l ,h -q~  

where ( )~ stands for the monomial of power/~. We then exploit the precise con- 

nection between the uniform boundedness of (4.4) and the behavior of D~¢ near 

the origin, showing that this uniform boundedness is equivalent to the bound- 

edness of the integrals ( D ~ ¢ .  uh)(0) for a suitable approximate identity {uh}. 

Using the decay of DZt~ at infinity, the boundedness of (4.4) is reduced to the 

boundedness of D~¢ around the origin, a property which is valid in the case 

of fundamental solutions of homogeneous elliptic operators. On the other hand, 

if D~¢ admits a log singularity at the origin (as in the case of the "shifted" 

fundamental solution), the boundedness condition is violated, hence the approx- 

imation order in general is necessarily O(ht+lllog hi). The following theorem 

summarizes the resulting consequences with regard to the examples considered 

in the previous section. 

THEOREM 4.1: Let m be an even integer and ~ < m. 

(a) Assume that ¢ is a fundamenta/solution of a homogeneous e11iptic operator 

of order m and ¢ = V¢ satisfies (4.1) and (4.2). Then, for f with bounded 

derivatives of order ~ and ~ + 1, 

(4.5) IlQw,hf - flloo = O(ht+l[log hi). 
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g i n  addition the derivatives o f f  of order g + 2 are bounded, then 

(4.6) IIQ¢,hf - flloo = O(ht+l). 

(b) Assume that ~b is a "shifted" fundamental solution of the (m/2 ) th  iterated 

Laplacian, and that ~b = V ¢  satisfies (4.1) and (4.2). Then for f with 

bounded derivatives of order £ and £ + 1, (4.5) holds. If, in addition, the 

derivatives of order g + 2 o f f  are bounded then (4.6) holds for g < m - 1, 

yet for g = m - 1 = m o  the [log hi factor cannot be removed and (4.5) gives 

the best rate: precisely, there exists an infinitely differentiabte compactly 

supported f for which IlQc,,hf - f l l~  # °(MI log hi). 

We now commence on the detailed analysis. The first two lemmas will be used 

as a simple technical device for the analysis to follow. We use the notation 

Sz,h := 7Zd N h - l ( x  + [-1,  1]d). 

LEMMA 4.2: With Sx,h as above 

(a) G,,h:= ~ (l+lla-h-lzll~)-(d+k)<A{ II°ghl' k = O ,  
- h k, - d  < k < O. 

crES~,h 

(b) E (1 + Ha - h-ax[[oo) -(d+k) < Ah k, k > O. 
a ETzA \ s~,h 

Proof." We treat first the case x = 0 in (a). For d = 1 all the above results can 

be obtained, say, by an integral test. The multivariate case is then reduced to 

the univariate one, since 

[h -a] [h -a] 

E (l+llall~c)-(d+k) < 2d E (2 j+ l )d -a ( l+J ) - (d+k)  -< 2dd E ( l+J) - (k+l )"  
aES~,a j=0 j=0 

For the case of general z in (a), we first note that 

_< (1 + II, /to ) -¢d+k), 
aE(6+~d)n[_h-a,h- a]d 

with 6 E [0, 1] d. Using the estimate 

I1~ + oflloo > IIv + ,~11oo, 
0 ai_>0,  

ui = 1 oq < 0 , 
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we may divide the cube [ -h  -1, h-l] d by the coordinate hyperplanes, while on 

each subcube the corresponding partial sum is bounded by 

(1 + I1~11~o) - (~+k)  , 

~E~dAC 

where C is a cube with a main diagonal connecting the origin with a vertex 

of [ -h  -1, h-i] d. Summing up over all the 2 d subcubes with this property, we 

conclude that Gx,h _< 2dG0,h. 

Part (b) is proved similarly. | 

LEMMA 4.3: Let 7 be a continuous function which satisfies the following condi- 
tions" 

(a) h(~)l  --- A,(1 + II~lloo) -d 
(b) I~(~) - ~(~ + 6)1 < n~(1 + II~lloo)-(a+l), for ~al 6 e [ -1 /2 ,  1/2] d 

Then 

(4.7) I E ")'(a)- l 7(t) dt -- 0(1). 

/ ,  

~ESo, h J [ - h - l ' h - 1 ] 4  

Proof: For each a E S0,h let C,~ := a + [-1/2,1/2] d, C := U~es0.~ C~. 

first that (a) implies that 

Note 

I j([_h_l,h_qdT(t) d t -  / cT( t )  dt[ 

_<2dd(1 -4- h-l )  d-' max{[7(t)] : h -I  - 1 < I[t][o~ < h -1 + 1} 

<_2tidAl(1 + h-1)d-l h d = O(h), 

hence we may replace the domain of integration in (4.7) by C. The claim now 

easily follows, since by (b) and the continuity of 7 

~(") - Jfc° ~(t) dt] < A~(1 + ,.jj~)-(~+,), 

and the series ~,~ez,(1 + tla[Ioo) -(d+l) is convergent. | 

Next, we employ the quasi-interpolation argument in 

PROPOSITION 4.4: For a given non-negative integer j and a smooth function 
f whose derivatives of order £, £ + 1, ...,£ + j are all bounded, set KI, i := 
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E{=0 II/ll~,t÷,. Then Q¢,h with ¢ satisfying (4.1) and (4.2) has the property 

that for every smooth function f with bounded derivatives of order e, g+l,  ..., t + j ,  

I IO,~,d-  f l l~  -< AKI,J ht+l resp. A K I , j  ht+lllogh[ , 

/f for every function g with bounded derivatives of order t, t + 1, ..., e + j, which 

satisties D"g(x) = 0, lal ___ e for some x ~ ~a ,  

I E g(ha)~b(h-lx- a)l < AKg,j h TM resp. AKg,j h l + l l l o g h  I . 
aES.,h 

Proof." For x E ]R d and a smooth f as above let Tt,xf be the Taylor expansion 

of degree t of f around x. Then, with g := f - Tt,xf one has Kg,j <_ 2/(/,i, and 

D*'g(x) = O, lal < t. Thus, since Qv,h reproduces lit, 

(Q,p,hf - f)(x) = Q¢,hg(x) = E g(ha)¢(h- 'x  - a) , 
aE~" 

and the claim of the proposition follows if for g = f - Tt,~f, 

I ~ g ( h a ) ¢ ( h - ' x -  a)l < A g g j h  TM. 

aEZd\S~,h 

For that, we first observe that the assumptions on g provide the estimate 

Ig(ha)l <_ Allgllo~,tllh(r - xll~ = A h t l l g l l ~ , t l l h - X z  - ,~11~- (4.8) 

Therefore, 

] E g ( h a ) ¢ ( h - ' x - a )  
o, E2gd\S.,h 

< Ahtllglloo,, ~ (1 + IIh-'z-allo~) -(d+') 

aE~d\S.,h 

< allgllo~,th TM, 

where in the last inequality Lemma 4.2(b) has been employed. | 

Following [J 1], we improve the approximation order O(h t) implied by Corollary 

1.2, for ¢ satisfying (4.1) and (4.2). 



Vol. 78, 1992 MULTIVARIATE APPROXIMATION 121 

THEOREM 4.5: Under conditions (4.1) and (4.2), one has 

[[Q¢,hf - fj[oo = O(ht+lllog hi), 

for every smooth function f whose derivatives of order £ and £+ 1 are all bounded. 

Proof." By Proposition 4.4 (for the choice j = 1 there), it suffices to prove an 

inequality 

J y ]  g ( h a ) ¢ ( h - l z -  a)J _< AJJgJJoo,t+lht+lJlogh[, 
a E S,, :, 

for any g of the form g = f - Tt,xf.  As in (4.8), we estimate 

Ig(ha)l < Aht+lllglloo,t+lllh-~x - ~11~', 

and hence 

Ig (ha)¢ (h - '  x - a)] < Ah TM llgJloo,t+,(1 + flh-'x - cd[oo) -d. 

An application of Lemma 4.2(a) thus completes the proof. II 

In order to identify situations where the above J log hi term can be removed, 

we assume hereafter that ¢ satisfies also the additional requirement 

(4.9) ID:¢(x)l __ A(1 + Ilzllo~) -(a+t+~), I#1 = 1 . 

Under this further assumption, the problem of obtaining the exact order of Q¢,h 

can be further reduced: 

PROPOSITION 4.6: Suppose that ¢ satisfies (4.1), (4.2) and (4.9). 
approximation order 

llQ~,,hf - fll~ = O(hi+') 

Then the 

holds for every smooth function with bounded derivatives of order ~, £ + 1 and 

£ + 2 if  and only i f  the integrals 

? 
1~,h := I t"¢(t) dr, J[- h-l,h-q~ 

I~I = ~ + i ,  
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axe uniformly bounded in h. Moreover, if  I~,h # o([ log hi) for some Iul = ~ + 1, 
then 1"or any compactly supported infinitely differentiable f ,  which coincides with 

t ~ on the cube [-1,1] d, 

I(Q¢,hf - f)(0)l # o(ht+'llog hi). 

Proof: By Proposition 4.4 (with j = 2), it is sufficient to show that the above 

integrals are bounded if and only if the inequality 

(4.10) I ~  g ( h a ) ¢ ( h - ' x - a ) l  < AKa,2 ht+l 
aES~,h 

holds for every g whose derivatives of order t + s, s = 0, 1, 2 are all bounded, and 

whose derivatives of order < ~ vanish at x. 

By our assumptions, Tt+l.tg, the Taylor expansion of degree ~ + 1 of g around 

x, is a homogeneous polynomial of degree £ + 1, and 

( 4 . 1 1 )  [(g - Tt+,,=g)(z)[ < AIIglloo,t+211z - ~11~ ~. 

Now, by (4.1), (4.11), and Lemma 4.2(a), 

[ E [ g ( h a ) -  Tt+,,~g(ha)l¢(h-'x - a)[ 
aES.,~ 

<Aht+~llgll~,~+~ ~ (1 + IIh-'~ - . l l~ )  -(~-1) 
aES~,h 

<_A, ht+illgil~,t+2, 

which reduces (4.10) to the behaviour of the sum 

E Tt+, ,~g(ha)¢(h- ' x -a ) .  
ctES=,h 

Thus (4.10) is satisfied for all admissible functions g if and only if the sums 

(4.12) ~ (~ - h - ' x ) ' ¢ ( h - ' x  - ~), I~[ = t + 1, 
aES.,h 

are uniformly bounded in h and x. To proceed, we define 7(x) := x " ¢ ( - x ) ,  

[T/I = t + 1. From (4.9) we conclude that 

(4.13) ID~7(x)I < A(I + II~II~) -(d+'), IZl-- I, 
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showing that the boundedness of the sums in (4.12) is equivalent to that of the 

sums 

~.¢(-o~), I,fl = e + 1. 

t~ES0.h 

To complete the proof of the first claim, it remains to show that 7 satisfies the 

requirements in Lemma 4.3. Yet this is evident: condition (a) of that lemma is 

a direct consequence of (4.1), while condition (b) follows from (4.13). 

For the second claim, choose x = 0 to obtain 

aES0,h aES~.h 

Since the argument used in the proof of Proposition 4.4 shows that 

l/(hoO¢(-a)l = O(ht+'), 
~d\SO,h 

Lemma 4.3 provides the desired result. | 

At this point we wish to connect the behaviour of the integrals I¢,h, Iql = £ +  1 

with the behaviour of D~¢,  with Ifl] = £ + 1. For this, we take p to be as in 

(2.23) with ~ = 1 and II" 112 being replaced by H" ]1~ (any rapidly decreasing C ~  

function which is 1 in a neighborhood of the origin will do as well). Defining 

Ph := p(h.), we see that for an arbitrary measurable function f ,  

ft_h_, ~_,l,f -- /R, p~f < ~/2h_lSlltll~<_h_~ ]f(t)] dt' 
which is bounded independently of h provided that 

(4.14) If(t)l = O(lltll~d), as t ~ ~o. 

As for the integral 
/ ,  

J := I phf, JR d 

the definition of the generalized Fourier transform of f implies that 

: = f(z ) 

For the case of interest, viz, when f := ( )~¢, [fl[ = / + 1, (4.14) is satisfied and 

f coincides, up to a constant, with D~¢.  We thus conclude 
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PROPOSITION 4.7: The integrals l#,h, 1/~1 = t + 1, axe uniformly bounded in h 

if and only i f  Ja,h := (Da¢)(ua), 181 -- e + 1, axe uniformly bounded in h, with 

Uh = "fir = h-dP-'(h-l"). ~r the rmore ,  for each t81 = t + 1, JB,h • o(lloghl) if  

and only i f /~,a ~ o(I log hi). 

We are now in a position to improve the result of Theorem 4.5. 

THEOREM 4.8: Let ¢ satisfy (4.1),(4.2),(4.9) and the additional condition 

(4.15) 

Then 

(4.16) 

IIDa llo¢ < A ,  181 = e + 1 .  

IIQ~,hf - f[Ioo = O(h t+ l ) ,  

for f with bounded derivatives of order ~, e + 1 and e + 2. 

Proof: By Propositions 4.6 and 4.7, the proof of the theorem is reduced to the 

proof of the boundedness in h of 

= [ uhDa~ b , 181 = t + 1 .  (4.17) J ,h 
JR d 

Now, by the boundedness of Da¢ ,  and since uh = h-dp"(h -a'), 

uhD¢  <_a f luhl=a f I 
lR  d IR ~ 

This result applies to most of the cases considered in Section 2. 

COROLLARY 4.9: Let ¢ satisfy conditions (2.2) and let ¢ = V t ¢  satisfy the con- 

ditions of Lemma 2.2 with e < min(m0, m). Then for f with bounded derivatives 

of order e, £ + 1 and e + 2, 

[[O¢,hf - fl[  = O(ht+l). 

Proof: To show that ¢ satisfies the conditions of Theorem 4.8, observe that (4.1) 

and (4.9) follow from Lemma 2.7 and Remark 2.8, and that (4.2) is guaranteed 

by Theorem 2.9. Finally condition (4.15) follows from (2.2)(e) and expression 

(2.16) with t < m0. | 
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Theorem 4.5 and Corollary 4.9 when specialized to a fundamental solution of 

a homogeneous elliptic operator ~b, yield part (a) of Theorem 4.1, since rn0 = 

oo. For ~ a "shifted" fundamental solution of the (ra/2)th-iterated Laplacian, 

Theorem 4.5 and Corollary 4.9, yield part (b) of Theorem 4.1 for £ < m - 1, since 

in this case m0 = rn - 1. To complete the proof of Theorem 4.1. it is sufficient, 

in view of Propositions 4.6 and 4.7, to show that 

LEMMA 4.10: Let ~b be a "shifted" fundamental solution of the (rn/2)th iterated 

Laplac/an and let ~b = Vt~k satisfy the conditions of Lemma 2.2 with ~. = m - 1. 

Then ~b satistles conditions (4.1),(4.2),(4.9), and for/3 = (m, 0, ..., 0) 

(4.18) ./~,h = / u h D ~  # o(I log hi). 
* J  

IR d 

Proof." By Lemma 3.5, Corollary 2.11, and Remark 3.6, ~b satisfies (4.1), (4.2) 

and (4.9), while, by (3.26), D : ~  decays to zero at infinity. The behavior near 

w = 0 of D ~ ( w )  is obtained from (3.31). For w E B~, application of D ~ to 

(3.31) yields 

(4.19) DP~(w) = -~m!Iog II~,ll + o(1) ,  ~ # 0. 

Now, for any f with at most polynomial growth at infinity 

lim [ :(~,),,,(~,)dw = lim [ :(~h)Z(~)d~ = 0 (4.20) 
h--*O J h ---+ oo J 

Ilwll>l II,Ml_>h-~ 

since ~" decays faster than any polynomial at infinity, being the Fourier transform 

of a C~°-function [GS]. 

Thus for/3 as above, we obtain in view of (4.20) (when applied to f = D~t~ - 

~m!log Hwll) and (4.19), 

/ u,D#,~ = A / uh(w)log llwlldw + 0(i). 
lRd ]R ~ 

The claim (4.18) now follows from the observation that 

[ u,/w)log ,w,dw = log~ [ ~)d~ + o/1), 
Rd R,I 

in which we have used the fact that ~log H" H is integrable, as the product of a 

rapidly decreasing function by a tempered one. | 
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5. Approximation Order by Quasi-interpolatlon Over a Bounded 
Domain 

We now come to the more practical question of determining the rate of conver- 

gence for quasi-interpolation over a bounded region. We take ~ to be an open 

bounded region of ]R d and suppose that we have a function f E C t+l (~). We 

now define the quasi-interpolant to f on ~ by 

(5.1) Q ~ , , . ~ f ( x ) =  ~ /(h~)¢(h-ix-~). 
aEZ~Nh-IN 

Assuming as before that ¢ satisfies conditions of the form 

(5.2) Qcp = p ,  p • ~ e ,  I¢(x)l < A(1 + I[zll~) -(d+k) , k > ~ + 1 ,  

we cannot expect convergence on the whole of ~, but look for convergence on a 

domain smaller by size 6 := ~(h): 

(5.3) a~ = {y • a : Ily - zlt~ < 6 ~ z • a} .  

We think of $ as being fixed or going to 0, as h goes to 0. In the compactly 

supported case one may define ~(h) = ch, where c depends on the diam supp ¢, to 

get the same approximation order as obtained with respect to the whole domain 

]R d. However, in our analysis we will have to impose slower decrease on ~ in order 

to preserve the approximation orders established in the previous section. In case 

is fixed, we take it small enough so that ~6 ¢ 0. It is possible to at tempt to 

establish the rate of convergence by first extending the function f to a function 

fE over the whole of IR ~. If JE satisfies, e.g., the conditions of Proposition 1.1 

or Theorem 4.5 then the rate of convergence can be deduced from an estimate 

of the error between Q~,h,af and Q¢,hfE. Suitable fE can be provided in many 

eases by the Whitney Extension Theorem [HI, although this cannot be used for 

all domains ~. We take here a different approach: since the error is measured 

in the c~-norm, we must treat the worst case, occurring when approximating 

next to the boundary of ~6, where the contribution then to the approximant 

may be based only on a small cube (of size 25) centered at the point in question. 

Therefore, we consider, instead of the above Q¢,h,n, a quasi-interpolant Q¢,h,a,6 

of the form 

(5.4) Q¢,h,a,6f(x) := Z f (ha)¢(h-lx - a). 
{~eTz.~: Ilha-~ll~ _<6(h)} 
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Such an approach is independent of the topology of fl: it requires, in the quasi- 

interpolation argument, an estimation of a new term in the error, associated with 

the error obtained when approximating p E lit by Q¢,h,n,,p. Such term did not 

occur in the case fl = ]R d, since Q¢,h reproduces lit.  The admissible functions 

that are being approximated here are always assumed to lie in Ct+I(~) with their 

derivatives up to order £ + 1 bounded in ft. As a preparation we first sketch the 

approach taken here. 

For x E fla, we estimate I(Q,p,h,nf - f)(z)l  by writing 

(5.5) I(Q¢,h,ftf - f)(x)l <lQ,p,h,~,6(f - Tf)(x)l  + I(Q¢,h,~,6Tf - Tf)(x)[ 

A - [ ( Q g , , h , f t  - Q,~,h,~,~)f(x)l + I(Tf - f)(x)h 

where T f  := Tx,tf, namely the Taylor polynomial of degree ~ of f at x. We then 

estimate each summand on the right-hand side of (5.5) separately. 

The last term in (5.5) is evidently 0. Bounding expressions like the first term 

in (5.5) was the focal point in Section 4. This was done, under various conditions 

on ¢ and f ,  in Proposition 1.1/CoroUary 1.2 and in Theorems 4.5, 4.8, and 4.1. 

We therefore need to bound the two middle terms in (5.5). Our first lemma treats 

the third term there. 

LEMMA 5.1: For an admissible [unction f and x E ~ 

(5.6) I(Q,~,h,a - Q ¢ , h , n , 8 ) Y ( x ) l  < AllYll~(h/~) ~, 

where A is independent of h, f and x E f~6, and k is as in (5.2). 

Proof: Since f is bounded, it is sufficient to prove the claim for the choice f = 1. 

In this case, by (5.2), the left hand of (5.6) is dominated by the sum 

A Z (1 + [[a - h-'xHoo) -(d+k). 

The required estimate now follows from Lemma 4.2(b). 1 

The next lemma treats the second term in (5.5). 

LEMMA 5.2: For an admissible [unction f and x E ~6 

(5.7) I(Q¢,h,n,6Tf - Tf)(x)l <_ A(h/5) k, 
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where A is independent of z, ,5, and h, and k is as in (5.2). 

Proof." Using the polynomial reproduction property of Q¢,h, we have 

(5.s) (Q¢,h,a,sTf - Tf)(x)  = y ~  T f ( h a ) ¢ ( h - ' x  - ~). 
{aETz.d: IIz-/,,~ll~, >6} 

We may assume without loss that T f  is a monomial of degree j _< ~, which in 

turn can be bounded by II" - x l l ~ .  Now, (5.2) with Lemma 4.2(b) provide the 

estimate 

5: 

(5.9) 
{ aETZ"l: IIz-h~ll** >6} 

{t~EZ4I: IIz-h~lloo >61 

[[ha - x [ t ~ l ¢ ( h - ~ x  - er)t < 

h i l l  a - h - ' x l l ~ ( 1  + I I h - l x  _ alloo)-¢d+ k) 

hJ(a + I Ih - ' x  - alloo) j-(d+k) _ _ _  M ( h / ~ )  k - j  • 

Thus (5.7) records the worst case in (5.9), which corresponds to the choice j = 0. 
| 

The above lemmas show that for approximation order O(h/+1) one should 

restrict ~i(h) by assuming 

~(h) > ch 1-{t+l)/k, 

for some positive c, while for approximation order O(ht+lllogh[) in the case 

k = ~ + 1, it is even sufficient to take 

8(h) > el log hi -1/(t+1). 

We refer to '5(h) which satisfies the restrictions above as admissible. For an 

admissible di, the approximation order on ~t d by Q¢,h, established in sections 1 

and 4, can be converted to approximation orders by Q¢,h,n on fl6(h), provided 

that f ,  in addition to other relevant requirements (as specified in each theorem), 

has bounded derivatives in f~ up to and including order L We summarize this as 

follows: 

THEOREM 5.3: Assume that fl C ]Ft d is open and bounded, and ~ = 6(h) is 

admissible in the above meaning. Then, under the various conditions required 

from ¢ and f in Proposition 1.1, Corollary 1.2, Theorem 4.1, Theorem 4.5, 
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Theorem 4.8, and Corollary 4.9, the approximation rates established t h e r e / o r  

[[Qq,,hf - f[[oo are valid for [[Q,,h,af - f[[oo,a,, provided that in addition all the 

derivatives of f of  order up to g are bounded in ft. 

Note that for the case studied in Theorem 4.8, k = £ + 1, and thus, in contrast 

with all other cases, 6 must be held fixed, so that the approximation rate t + 1 

is proved only for fixed closed subsets of ft. 
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